Menu

Laboratoř počítačového modelování

Modelování fyzikálních procesů na počítačích propojuje teoretické poznatky s experimentálními pozorováními.


Pracovníci a studenti se věnují především dvěma směrům počítačového modelování:

1) Částicovému (atomárnímu) modelování

Jedná se o použití rovnovážné i nerovnovážné molekulární dynamiky (MD) ke studiu vzájemných interakcí molekul. Studenti se zabývají modelováním interakcí molekul s povrchy a adsorpcí molekul, studiem struktury, dynamiky a interakcí nukleových kyselin, oligonukleotidů a jejich komponent.
Kde je potřebné, tyto simulace jsou kombinovány s kvantovými výpočty, které poskytují interakční parametry dále používané v molekulárních simulacích systémů o velikosti tisíců až stotisíců atomů.
Výsledky simulací jsou porovnávány s teorií (teorie elektrické dvojvrstvy), experimenty (rentgenová difrakce, povrchová titrace, adsorpční experimenty, second harmonics generation) a kvantovými výpočty (ab initio výpočty, kvantová dynamika).

Fenolát interagující s křemenným povrchem DNA adsorbovaná na grafenovém povrchu Ionty interagující s různě nabitými rutilovými povrchy

V současnosti je řešen projekt:
“Molekulární popis jevů v elektrické dvojvrstvě - predikce a interpretace experimentálních dat počítačovými simulacemi”, standardní projekt GAČR 17-10734S
Řešitelský tým:
doc. RNDr. Milan Předota, Ph.D.
Ing. Ondřej Kroutil, Ph.D. - vědecký pracovník
MSc. Denys Biriukov - doktorand (biofyzika)
Mgr. Pavel Fibich, Ph.D. - správa výpočetního klastru, IT podpora.

Řešené studentské práce:
Témata jsou vhodná pro studenty oborů Fyzika, Fyzika pro vzdělávání, Biofyzika, Měřicí a výpočetní technika, Aplikovaná informatika, Chemie

Středoškolská odborná činnost (S0Č)
2011-2013 Jiří Guth: „Počítačové simulace interakcí organické hmoty s křemenným povrchem“, Gymnázium Jírovcova, České Budějovice (vítězství v sekci Fyzika v KK SOČ, 7. místo v celostátním kole, Cena Učené společnosti ČR)
Bakalářsk
é práce

2009-2011 Lucie Krohová: „Software pro zobrazování molekulárních struktur", Jihočeská univerzita, Zdravotně sociální fakulta, obor Biofyzika a zdravotnická technika
2009-2011 Kristýna Šilhavá: „Software pro molekulární dynamiku", Jihočeská univerzita, Zdravotně sociální fakulta, obor Biofyzika a zdravotnická technika
2011-2012 Hana Barvíková: „Interakce organických látek s minerálními povrchy“, Jihočeská univerzita, Přírodovědecká fakulta, obor Měřicí a výpočetní technika
2011-2012 Aleš Svoboda: „Výpočty na grafických kartách“, Jihočeská univerzita, Přírodovědecká fakulta, obor Měřicí a výpočetní technika
2012-2013 Tomáš Krejsa: „ Programování výpočtů na grafických kartách“, Jihočeská univerzita, Přírodovědecká fakulta, obor Aplikovaná informatika
Magisterské práce
2009-2011 Bc. Hynek Hanke: „Molekulární simulace rozhraní voda – rutil", MFF UK Praha, obor Biofyzika a chemická fyzika
2012-2014 Bc. Hana Barvíková: „Studium interakcí organické hmoty a jejích složek pomocí molekulární dynamiky“, Jihočeská univerzita, Přírodovědecká fakulta, obor Biofyzika
2014-        Bc. Tomáš Krejsa: „Využití GPU v programu Gromacs", Jihočeská univerzita, Přírodovědecká fakulta, obor Aplikovaná informatika
Disertační práce
2009-2013 Mgr. Stanislav Pařez: „Počítačové simulace rozhraní pevných látek a kapalin“, VŠCHT Praha, Fakulta chemicko-inženýrská, obor Fyzikální chemie
2010-2016 Ing. Ondřej Kroutil: „Molecular modeling of biomolecules – surface interactions“, Jihočeská univerzita, Přírodovědecká fakulta, obor Biofyzika
2016-         MSc. Denys Biriukov: „Computer modeling of interactions of biomolecules and organic compounds with mineral surfaces“

2) Modelování sluneční atmosféry

Numerické simulace v této oblasti jsou založeny hlavně na řešení tzv. magnetohydrodynamických (MHD) rovnic. V tomto případě tedy nahlížíme na plazma z makroskopického hlediska, tj. jako na vodivou kapalinu.

Řeší se zde hlavně problémy týkající se tzv. koronálního ohřevu, tj. objasnění vysoké teploty sluneční koróny. Více o tomto tématu se můžete dozvědět zde.

V letech 2010-2012 jsme byli spoluřešiteli grantu GAČR - Energetické procesy ve sluneční atmosféře: vztahy mezi simulacemi a pozorováními, standardní projekt GAČR, GAP209/10/1680.



Pro výpočetně náročné fyzikální a biofyzikální aplikace využívají členové ústavu a jejich spolupracovníci dvou fakultních superpočítačů

Klastr Hermes:Fakultní klastr hermes

11  strojů v racku, každý 2x Quad Core Xeon E5345 @ 2.33 GHz, 16 GB RAM, 5 x 500 GB HDD, Debian GNU/Linux
Tento stroj je zapojen do superpočítačového Metacentra, lokální uživatelé mají privilegovaný přístup.

Klastr UFY:

7 PC , každé Quad Core 2 Quad @ 3.0 GHz, 2 GB RAM,  500 GB HDD, SuSE 11 Linux + 4TB sdílený disk
1 PC Intel(R) Core(TM) i5-2310 CPU @ 2.90GHz (4 jádra), 500 GB HDD, Debian linux,  grafická karta GIGABYTE GTX 560 Ti Ultra Durable 1GB
1 PC Intel(R) Core(TM) Intel(R) Core(TM) i7-4790K CPU @ 4.00GH (8 jader), 500 GB HDD, Debian linux,  grafická karta GIGABYTE GTX 780

Klastr byl zakoupen z grantových prostředků:

  1. “Počítačové modelování strukturních, dynamických a transportních vlastností tekutin v nanorozměrech”, standardní projekt GAČR 203/08/0094
  2. “Studium struktury a dynamiky minerálních povrchů a biomembrán a jejich interakcí s organickými a anorganickými ligandy pomocí počítačového modelování”, MŠMT - Kontakt, ME 09062

Oba klastry mají instalované paralelní prostředí pro spouštění víceprocesorových  (vícevláknových) úloh a jsou využívány při výuce předmětu UAI/730 Paralelní programování,  UFY/SIM1  Počítačové simulace ve fyzice mnoha částic a UFY/SIM2 Pokročilé simulace ve fyzice mnoha částic.

Pro výpočty využíváme též zdroje výpočetních center Metacentrum + CERIT-SC